
1. Technical Document (Per Machine)

Machine
Hostname
 Interface IP Address Subnet Mask Gateway Hosts/DNS Alias
Public login

Private 10.0.0._____ 255.255.255.0 10.0.0.1 wn0______

Partitions FS Type FS Size Recommended

/boot xfs 2GiB xfs, 2048MiB
swap swap 16GiB swap, 64GiB on WN, or 0.5 x RAM others
/ xfs ~GiB xfs, remaining

Mount Points Mounted From
Read
Only

Read
Write Notes

/home X
/scratch X Fast storage (SSD or NVMe)
/soft Read only on WNs after soft is installed

Software Installed Working Notes

IPTables Only HN, unless WNs have direct internet
Torque Server HN only
Torque Client Mostly WNs but can consider on HN
Maui Server HN only
NFS Server HN only
NFS Client WNs only
Ganglia Web-Service & gmetad HN only
Ganglia gmond client All nodes
Environment Modules All nodes
GCC or Chosen Compiler On /soft
OpenMPI On /soft

The team leader must ensure that each line item is checked and that each application/service works as expected.
Also, make sure that services are started up after a reboot
Use a naming convention for nodes such as:
 wn01, wn02, wn03 or node01, node02, node03
 Then use a suffix that is added at the end of the name for the private network, e.g., suffix: -ib
 wn01-ib, wn02-ib, wn03-ib or node01-ib, node02-ib, node03-ib

2. Full Design Plan

It could be helpful to use a format like AB & C …. Meaning: member A & B is responsible with C as backup

Task Description On
Host

By
Member(s)

Notes

03
Install OS HN AC & D
Install OS WNs

 Set DNS to 8.8.8.8

04
Configure Network HN

 Not required if the network was
configured during the installation Configure Network WNs

05 Configure iptables with NAT HN
06* Add node names to the hosts file HN
07* Create SSH keys for the root user HN

08*
Configure SSH Service HN
Configure SSH Service WNs

09*
Disable SELinux HN
Disable SELinux WNs

10* Create accounts HN
11* Setup sudo HN Copy /etc/sudoers to nodes
12* Auto-generate SSH keys (script) HN
13* Change password if needed HN
14 Synchronise files from HN to nodes HN

15*
Perform a yum update HN
Perform a yum update WNs

16* Configure NFS Server HN
17* Configure FSTab (NFS mount) WNs
18 Testing by Team Leader HN

19*
Install Environment Modules HN
Install Environment Modules WNs

20*
Performance Tuning HN
Performance Tuning WNs

21* Install the Intel Compiler HN

22
Reboot Machines HN
Reboot Machines WNs

You should have a functional cluster now. If Torque, Maui and Ganglia are not required, continue with
installing the Scientific Software

23* Install Torque Server HN
24* Install Torque Clients WNs

• Add all identified tasks with the responsibilities etc., here
• Tasks numbered the same or marked with *should be executed in parallel to save time
• Task numbers reflect the chapter number in this document
• After each task, the team leader should verify that the specific job has been completed

NOTE: In the following segment, you will see grey code blocks. These commands usually have to be
executed as the root user; unless stated otherwise

NOTE: In the following segment, we make use of xx in IP Addresses, which should be replaced with the
valid values for your specific configuration

3. * Install OS & Reboot (HN,SN & WNs)

Each node must be installed according to the design set out in the technical document.
Networking can be configured during the installation process, and it is advised; it will save you time
It is recommended to install all nodes using a Kickstart file; this way, all the configuration is uniform

Head Node:

• If the HN is used to export software and scratch…. It could be helpful to add an extra HD
• The HN can be installed in the same way as a Compute/Worker Nodes
• If the HN is also going to execute jobs, Torque mom must also be installed – if using Torque

Worker Nodes:

• If a package/library is installed on one node, install the same package(s) on all nodes!!!!

4. * Setup Network Interfaces & ping nodes
If the network interfaces have not been configured during installation, configure them now
Make sure that the HN can reach the internet and the public network
Make sure that each IP address of the nodes can be pinged from the HN, e.g.:

 Private IPs (nodes): ping 10.0.0.1; ping 10.0.0.2; ping 10.0.0.3; ping 10.0.0.4

At this point, only the wn01, will be able to ping the gateway
(change the IP address to what is provided as the gateway):
 grp01 : Public Gateway IP(s): ping 192.168.101.1
 grp02 : Public Gateway IP(s): ping 192.168.102.1
 grp03 : Public Gateway IP(s): ping 192.168.103.1
 …

Example content of /etc/sysconfig/network-scripts/ifcfg-eth1

On wn01, you will have to modify 2 files, one for each network interface you have.
Your device names may also differ so that it may be: /etc/sysconfig/network-scripts/ifcfg-eno1
After modifying the file(s), restart the network service:

DEVICE=eth1
BOOTPROTO=none
ONBOOT=yes
DEFROUTE=yes #On wn01: This option should be yes for ifcfg-eth0 and no for ifcfg-eth1
TYPE=Ethernet
IPADDR=10.0.0.1
GATEWAY=10.0.0.1 #On wn01: this should be the provided public gateway eg: 192.168.10x.1 on eth0
NETMASK=255.255.255.0
SEARCH=cluster.ufs.ac.za
DNS1=8.8.8.8
IPV6INIT=no
USERCTL=no

systemctl restart network

5. Configure IPTables - Firewall with NAT enabled (HN only)
IPTables is a firewall that is widely used on GNU Linux. In recent years, RedHat and SuSE Linux moved
over to FirewallD. However, a lot of GNU Linux users still prefer IPTables. The configuration of IPTables is
done in the /etc/sysconfig/iptables file, but before modifying it, we have to ensure that IPTables is installed
and FirewallD is disabled.

After the previous commands have been executed, you can edit the /etc/sysconfig/iptables file to reflect the
following basic rules (Remember to replace the xx with your actual IP addresses):

The rules with BOLD text need to be modified. In this example, eth0 is the public interface
(192.168.10x.1) with Internet access through its gateway. The other mentioned interface (eth1) is the
interface of the private network, for example, the interface with a 10.0.0.1 IP address.

After adding the above commands, or after modifying IPTables rules, you have to restart the IPTables service
by executing:

The abovementioned rules set up IPTables that allows NAT traffic through its public interface. To activate
NAT-ting, one needs to execute the following commands (only required on the HN):

To set the default gateway, we specify the default routing interface in /etc/sysconfig/network:

yum -y install iptables-services

systemctl enable iptables
systemctl disable firewalld
systemctl start iptables

*filter
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
:FW - [0:0]
-A INPUT -j FW
-A FORWARD -j FW
-A FW -i lo -j ACCEPT
-A FW -p icmp -m icmp --icmp-type 8 -j ACCEPT
-A FW -p udp -m udp --dport 8649 -j ACCEPT
-A FW -m state --state RELATED,ESTABLISHED -j ACCEPT
#Change the x, to your group number. So, for grp03 becomes 192.168.103.0/24
-A FW -s 192.168.10x.0/24 -j ACCEPT
-A FW -s 10.0.0.0/24 -j ACCEPT
-A FW -p tcp -m state --state NEW -m tcp --dport 22 -j ACCEPT
-A FW -p tcp -m state --state NEW -m tcp --dport 80 -j ACCEPT

#The following 2 rules a required for NAT-ing
-A FW -i eth1 -o eth0 -m state --state RELATED,ESTABLISHED -j ACCEPT
-A FW -i eth0 -o eth1 -j ACCEPT

-A FW -j DROP
COMMIT

*nat
-A POSTROUTING -o eth0 -j MASQUERADE
COMMIT

systemctl restart iptables

echo "net.ipv4.ip_forward=1" >> /etc/sysctl.conf

#Now apply the NAT configuration persistently after reboots:
sysctl -p

Restart the network services:

Tip: Whenever you are setting up a service that works through the network, and it seems that it is not
working, temporarily stop IPTables on both machines and try again. If it works, then add the correct entries
into IPTables. Also, make sure to start IPTables again afterwards. Another helpful file is /etc/services. It lists
several standard services with the ports on which they run.

6. Modify /etc/hosts to contain all node names and IP addresses (HN)
The /etc/hosts file contains the hostnames and IP addresses of machines you want to refer to and that do not
use a Domain Name Server (DNS). It is a good idea (if you don't have access to a DNS) to add the IP
addresses and different names of the nodes into this file, so the system can resolve them as needed.
The format of the file is simple. Keeping the local and localhost IP addresses in the file is vital.
Here is an example of a /etc/hosts file:

7. Create SSH Keys for root and copy them to WNs (HN)
Using SSH Keys to login onto nodes is very important in a cluster. This allows users to log in to nodes
without using a password. It is essential in a cluster because when a job is started from the HN, the job will
act as that user and log in to the remote node(s). If it needs a password to log in, the job will fail. The job will
fail if an MPI job starts and the SSH keys aren't installed.

An SSH Public Certificate can be shared, emailed or copied to other people. However, the Private
Certificate/Key should never be shared with other people. If a Private key is shared, it can be used by other
people to log into the system with your account. If a Private Key is stolen or shared, that key must no longer
be used and should
be replaced.

GATEWAYDEV=eth0

systemctl restart network

127.0.0.1 localhost localhost.localdomain
::1 localhost

#The following line can be uncommented if you use a separate hn, login, storage node
#10.0.0.100 hn login storage scratch

#The following 3 lines are of importance
10.0.0.1 wn01 node01 wn01-ib node01-ib hn login storage scratch
10.0.0.2 wn02 node02 wn02-ib node02-ib
10.0.0.3 wn03 node03 wn03-ib node03-ib
10.0.0.4 wn04 node04 wn04-ib node04-ib

#If you have a different IP range for storage, you should also specify it here:
#192.168.10x.100 hn-ib login-ib storage-ib scratch-ib
#192.168.10x.1 wn01-ib node01-ib
#192.168.10x.2 wn02-ib node02-ib

#Note: First execute this line on its own:
[-e ~/.ssh/id_ed25519] || ssh-keygen -t ed25519

cd ~/.ssh
cat id_ed25519.pub >> authorized_keys
chmod 600 authorized_keys
nodes=4
for i in $(seq -w 1 $nodes); do
 scp -r ~/.ssh wn0${i}:
done

After executing the above, you should be able to SSH to the remote host using the specified username
without typing in a password.

8. * Configure SSH Service & turn off root login using a password (HN WNs)
Root login from remote machines (Internet) is dangerous, so we disallow the root user to log in from remote
locations (over any network interface) using a password.
However:

• The root user will still be able to log in at the physical machine using a password
• Users that have sudo privileges will still be able to become root
• The root user can log in from remote locations via SSH Certificates/keys

To-do: Modify /etc/ssh/sshd_config

Look for the following Parameters and modify/add the following values where needed:

The lines in bold are the important ones; the others should already exist.
The UseDNS is disabled to speed up the logins from remote hosts.
After modifying this file, you will have to restart the SSH service:

9. * Disable SELinux (HN & WNs)
SELinux is used to harden security on a GNU Linux system. It restricts users and services from accessing
files, ports, connection types and devices without pre-approved permission. For instance, Apache is allowed
to serve websites from a specific location. Still, if files are placed outside that location and Apache is
configured to publish them, an SELinux violation will occur.
It is best practice to keep SELinux running on a production server, but for our purpose here, it is easier for
you to disable SELinux than having to "debug" that too.

Modify the /etc/selinux/config file:

After modifying the SELINUX parameter, you must reboot the system for the changes to take effect.
However, if you are not allowed to reboot the system, you can execute the command:

10. Create user accounts, add to the admin (wheel) group and give a
password (HN)

It is helpful to add a group that will become the cluster's software owner. When regular user accounts are
created, those users can then just be added to the group, and they will have the required access to the
software:

PubkeyAuthentication yes
PasswordAuthentication yes
PermitRootLogin without-password #Set this value to yes if you are struggling
UseDNS no

systemctl restart sshd

SELINUX=disabled

setenforce 0

groupadd -r hpcusers

It is good practice not to use the root administrator account unless it becomes essential. A system group exists
that already has some root privileges set to it. The group "wheel" is configured in the sudoers file, which
allows group members to execute commands as root.

To create a user that is a member of "wheel", the following command can be executed:

The above command will create a user called username that belongs to the groups wheel and hpcuser. The
user’s home directory(-m) will also be created.

You can give an encrypted password for the user when you create the account, or you can just set the
password afterwards with the following command:

After typing the above command, the user is prompted to enter and confirm the password. Note that
nothing is displayed on the screen while the user is typing the password.

11. Set up sudo rights (HN)
A sudo file gives specific users permission to execute specific commands, which require root privileges, on
the system.
The file that controls all the sudo system rights is:
/etc/sudoers
After adding members to the wheel group, they will, by default, have access to execute commands as root
because of the line that reads:

You may also opt to add a line in /etc/sudoers or simply remove the # in front of the existing line to allow
sudo commands without prompting for your password. The line should look as follows:

It is just mentioned here which file to modify in case you need to change it or if you want to allow specific
users to execute some particular commands only. This file can also be copied to other hosts requiring the
same permissions, which is discussed later in this document.

useradd -G wheel,hpcusers -m username

passwd username

%wheel ALL=(ALL) ALL

%wheel ALL=(ALL) NOPASSWD: ALL

12. Each user logs in and Generate their SSH Keys (HN)
In step 7, we discussed creating SSH Keys for the root user. The procedure is similar for other users, except
the users' home directories will be shared between the nodes, and thus, the generated keys don't need to be
copied over to other nodes. However, one needs to add the public key to an authorised file with a list of
public keys that can be used to authenticate as the user.

All the system users should execute the following commands to allow them to connect password-less to the
nodes:

Very Important

It will be helpful to add the above code into a script that is executed on the Head Node when a user logs
in. If you opt to add it into such as script, place the script in something like /etc/profile.d/ssh_keys.sh
and remember to make it executable for all users: chmod 755 /etc/profile.d/ssh_keys.sh

13. If generic passwords were used, each member must change their
password (HN)

If you made use of a generic password or did not set the password for the other members of the team, you
You may want to do it now because the passwords will be synced to the rest of the nodes in the following
steps.

14. Sync /etc/{passwd,hosts,group,shadow,sudoers} files to WNs (HN)
After ensuring that all the team members have set their passwords, are in the wheel group and that the
sudoers and hosts entries are correct; you should copy the configuration files to all the nodes.

The important files can be copied by executing the following command on the HN:

The abovementioned command should be executed whenever a user is added to the system when a host/node
is added, or its IP address is changed. Note that some applications installed from RPM/yum, also add users.
To be safe, synchronise the files again after installing an RPM on the HN. To be safe on the nodes' side, first
sync the files from the HN before installing an RPM.

if ! [-e $HOME/.ssh/id_ed25519]; then
 ssh-keygen -t ed25519
 cd
 cd .ssh
 cat id_ed25519.pub >> authorized_keys
 chmod 600 authorized_keys
fi

passwd member1
passwd member2
passwd member3
passwd member4

NumberOfNodes=4
for i in $(seq 1 $NumberOfNodes); do
 scp /etc/{passwd,shadow,group,sudoers,hosts} wn0$i:/etc/
done

15. * Perform a yum update (HN & WNs)
After installing the nodes and if they have internet connectivity, update all the machines:

16. Create scratch, soft and home directories and setup NFS (HN or SN)
As mentioned, the scratch, soft, and home directories must be shared over the network between all the nodes.
To achieve this, we need to export them using NFS. The files and directories will be physically stored on
your Storage Node's hard drive, but users can access them on the nodes too.

Before setting up NFS, I would recommend that the directories that need to be shared are created and that
they all reside in a logical path. I usually make a /exports or /data directory. Even though we are talking about
a directory here, it could (and in production it should) be a different volume from the root (/) filesystem.

Assumptions:
Suppose you have a Solid-State Disk (or faster) that will be used for the homes, scratch and software
storage. Suppose you have mounted this disk on /exports and added the mount point into your fstab, which
is automatically mounted after the machine is restarted.

The NFS configuration is done on the same storage, Scratch, or Head Node we configured above.
Edit /etc/exports to contain the following (Note, you have to change the IP addresses to reflect yours):

The async option is used to lie to the nodes saying what a file has been written to disk while the file is still in
the server's cache. This allows the node to continue while the server writes to disk. The risk with that is that
should the server be restarted in the meantime, data corruption will occur. We can make this trade-off now to
have better performance….if you want to risk it. If no_root_squash is used, remote root users can change any
file on the shared file system. This is okay in our trusted environment but should be removed if you export to
untrusted sources.

For the changes to be applied, the following services should be restarted:

yum -y update

#We are assuming /exports are already created/mounted,
if not create it first: mkdir /exports
cd /exports

#Make sure that you are on the correct path and see the data expected in this volume
ls

#Create the scratch and soft directories
mkdir scratch soft

#Create the symbolic links:
ln -s /exports/soft /
ln -s /exports/scratch /

#Installing the NFS utilities is later required
yum -y install nfs-utils

/home 10.0.0.0/24(async,rw,no_root_squash)
/exports/soft 10.0.0.0/24(async,rw,no_root_squash)
/exports/scratch 10.0.0.0/24(async,rw,no_root_squash)

systemctl restart rpcbind
systemctl restart nfs-server
systemctl enable rpcbind
systemctl enable nfs-server

17. Mount NFS Exports in the correct paths and modify fstab (WNs)
After the NFS "server" has been configured, you should be able to mount the exported filesystem on all WNs:

If those commands were all successful, you should modify the node's /etc/fstab file by adding the following:

After modifying the fstab, you can execute mount -a to ensure everything is mounted correctly.
You can also make use of the following options to improve performance…..maybe read up on them:
tcp,rw,hard,intr,rsize=32768,wsize=32768,retry=60,timeo=60,acl,nfsvers=3,noatime

If you have difficulty mounting something, log into the server where you are mounting from, look in
/var/log/messages for messages about why something might fail and also see if the firewall isn't blocking you.

18. Ensure password-less SSH works from HN to WN01 to WN02 back to
WN01 back to HN etc.

After NFS is set up on all the nodes, all users (not just root) should be able to SSH to all the nodes without typing
in a password. Test this using one of the members' accounts. SSH to wn01, then exit and do the same for
wn02….wnXX. Also, make sure to SSH from one of the nodes back to the HN. Here is a command that might be
of assistance:

You will also notice that you must type in "yes" the first time you connect to a host; it is essential to know this
because if a user tries to run an MPI job and hasn't SSH'ed to that node name, the job will hang. Notice I said to
that node's name... it can also be wn01-ib etc.

19. *Install Environment Modules (HN & WNs)
The Environment Modules package is beneficial for managing users' environments. It allows you to write a
module file for multiple software versions and then lets the user choose which version (s)he would like to use.
For instance, you can install four different versions of GCC and then just use the one you require for a specific
purpose. It becomes beneficial when installing Scientific Software because a researcher usually uses a particular
version for his research, while another researcher needs another version for her study.

We already started using Environment modules in the "Submit and manually start an MPI job that uses all nodes"
section. You can install Environment modules by downloading the latest version from the
http://modules.sourceforge.net/ website or install the package through yum. I would recommend the yum install
method because you have to install this package on all the nodes, and the yum package available online will
suffice for this exercise.

#Installing the NFS utilities is required to be able to mount an NFS volume
yum -y install nfs-utils

mkdir /scratch /soft
mount scratch:/exports/scratch /scratch
mount storage:/exports/soft /soft
mount storage:/home /home

scratch:/exports/scratch /scratch nfs rw,tcp,noatime 0 0
storage:/exports/soft /soft nfs rw,tcp,noatime 0 0
storage:/home /home nfs rw,tcp,noatime 0 0

Headnode=wn01
Nodes=4
for i in $(seq -w 1 $Nodes); do
 ssh -n wn0$i "hostname;ssh -n $Headnode 'uptime' "
done

#Install the environment-modules package:
yum -y install environment-modules

The above install creates a few modules in /usr/share/Modules/modulefiles. They can be helpful to look at.
To see the modules available, execute the following command:

If you get an error that reads something like: “-bash: module: command not found”, just log out and back in.

Now we want the module command to look for modules in our software directory too. To achieve this, we can
create a file called /etc/profile.d/zhpc.sh, which is loaded when a user logs in to set the MODULEPATH. We
make the filename zhpc.sh because the order of execution in the /etc/profile.d is done alphabetically, and we
need the /etc/profile.d/modules.sh to be executed before our script is loaded. The following commands will
create the file and make it executable:

module avail

cat > /etc/profile.d/zhpc.sh <<EOF
#!/bin/bash

export MODULEPATH=\$MODULEPATH:/soft/modules
EOF

#Now create the same file for the C-Shell:
cat > /etc/profile.d/zhpc.csh <<EOF
#!/bin/csh

setenv MODULEPATH "\$MODULEPATH:/soft/modules"
EOF

chmod 755 /etc/profile.d/zhpc.{sh,csh}

It is recommended to create a generic module that is copied to all the nodes and holds generic variables that
nodes can use. Here is what is suggested:

Create a file: /usr/share/Modules/modulefiles/hpc with the content:

Then add the following line in a file (on all nodes) called /etc/profile.d/zmodules_hpc.sh :

This will load the hpc module every time a user is logged in.

The benefit of this module is that the environment will be set up so that modules put in /soft/modules will be
available to be loaded by users. An entry is made to add /soft/hpc as a location where scripts can be put that will
be in the user's path. The users will automatically be able to execute scripts in this path and have their executable
flag set using chmod.

Remember to copy the /etc/profile.d/zmodules_hpc.sh, /etc/profile.d/zhpc.sh and the
/usr/share/Modules/modulefiles/hpc files to all the machines, so you can create it on one node and scp it to the
other nodes:

#%Module 1.0

HPC module for use with the 'environment-modules' package:

set SOFT /soft
set MODULES $SOFT/modules

set username $::env(USER)
set tmp_scratch /scratch/$username

if {[info exists env(PBS_JOBNAME)]} {
 set scratch $tmp_scratch/$env(PBS_JOBID).$env(PBS_JOBNAME)

} else {
 set scratch $tmp_scratch
}

setenv HPC_SOFT $SOFT
setenv HPC_MODULE_PATH $MODULES
setenv HPC_TMP /tmp
setenv HPC_SCRATCH $scratch
setenv HPC_OWNER root
setenv HPC_GROUP hpcuser
setenv TERM linux

prepend-path MODULEPATH $MODULES
prepend-path PATH $SOFT/hpc

append-path INCLUDE /usr/include
append-path LD_LIBRARY_PATH /usr/lib64
append-path PKG_CONFIG_PATH /usr/lib64/pkgconfig

set-alias vi "/usr/bin/vim"

module load hpc

#We assume that the files were created on wn01 and are now copied to the other
#nodes:

for i in $(seq 2 4); do
 scp /etc/profile.d/zmodules_hpc.{sh,csh} wn0$i:/etc/profile.d/
 scp /etc/profile.d/zhpc.sh wn0$i:/etc/profile.d/
 scp /usr/share/Modules/modulefiles/hpc wn0$i:/usr/share/Modules/modulefiles/
done

You may see errors such as:
ModuleCmd_Load.c(213):ERROR:105: Unable to locate a modulefile for 'hpc'

And
/etc/profile.d/zmodules_hpc.csh: No such file or directory

That is normal, because the files don’t exist on all the nodes yet.

20. *Performance Tuning (HN &WNs)

Some performance tuning can be done within the Linux environment itself. Numerous optimisations will
enhance your machines' performance in an HPC environment. However, it is particular to the equipment that is
used. For this reason, we will only set up a few important ones, such as the CPU throttling by the kernel.

Change or add the following entries in /etc/security/limits.conf :

These settings will only be applied after a system reboot (which will be done in the next section) and can then be
viewed with the command:

The following script should be executed on all nodes to add a new performance-tuning module to your Linux
environment:

* hard memlock unlimited
* soft memlock unlimited
* soft nofile 63488
* hard nofile 63488

ulimit -a

ProfileName=hpc-performance
Vendor=$(lscpu |grep "^Vendor ID" | sed -e "s|.*: *||g")

if [$Vendor == "GenuineIntel"]; then
 grep "intel_pstate" /etc/default/grub > /dev/null
 result=$?

 if [$result -ne 0]; then
 sed -i "/^GRUB_CMDLINE_LINUX=/ s|\"$| intel_pstate=disable\"|g" \
 /etc/default/grub
 grub2-mkconfig -o /boot/grub2/grub.cfg
 fi
 cat /proc/cmdline |grep "intel_pstate=disable" > /dev/null
fi

cd /usr/lib/tuned/

[-e $ProfileName] || mkdir -p $ProfileName
cd $ProfileName
cat > tuned.conf <<EOF
[main]
summary=Optimize for deterministic performance; increased power consumption
include=throughput-performance

[sysctl]
vm.overcommit_memory = 1
EOF

tuned-adm profile $ProfileName
tuned-adm active

Very Important BIOS settings:

Some modifications should also be done in all the nodes' BIOS – if you have access to the BIOS (so not
on any virtual infrastructure).
The most important (if they exist in your BIOS) settings are:

Power Configure to use Max power if there is such an option
P-State Disabled - This is also enforced by the script executed above
C-State Disabled
Turbo Mode Enabled - Specific to Intel CPUs
Hyper-Threading Disabled - Intel
O Non-Posted Prefetching Disabled - Intel Haswell/Broadwell and onwards CPUs
CPU Frequency Set to Max
Memory Speed Set to Max
Memory channel mode Set to "independent"
Node Interleaving Disabled - We need to enable NUMA
Channel Interleaving Enabled
Thermal Mode Set to Performance mode
HPC Optimizations Enabled - AMD Specific

Also, see: https://community.mellanox.com/docs/DOC-2297 for an example of HPC BIOS settings

21. *Install the Intel Compiler (HN)
The Intel Compiler is an optimised compiler that drastically enhances Scientific Software's performance. Intel
has a free edition available to students that is valid for a limited time only. Registering for the download can take
a few days, so some planning is needed to ensure you have access to the compiler when required. At the time of
this writing, a suite known as Intel Parallel Studio XE version 2019 is available. The essential components in this
collection are Intel Compiler for C/C++, Intel Compiler for Fortran, Intel MPI SDK,
Intel Math Kernel Library (MKL), Intel Thread Building Blocks (TBB) and optionally, if you are going to run
software (such as Pluto) that makes use of Python: Intel Python 2 & 3. Also, make sure you download the Linux
versions instead of the Mac or Microsoft versions.

The installation has a graphical or a text wizard that can be run to install the compilers. Seeing that we use a
Linux terminal, we will focus on the command line wizard. To automate the installation procedure, the install.sh
script will be called, and a custom silent configuration script will be created that is parsed to the install.sh, script.
In the following script, we will install the compiler onto the NFS share, making it available on all the nodes.
Execute the following steps on the HN to install the Intel Compilers:

In the above script, type the requested serial number (in bold). Also, ensure you do not have spaces before or
after the equal signs.

#Specify YOUR serial number in the next line
SERIAL_NUMBER=Enter_Your_Serial_Number_Here
INTEL_VERSION=2019
PYTHON_VERSION=2
PACKAGE_NAME=parallel_studio_xe_${INTEL_VERSION}_update1_cluster_edition
TAR_FILE=${PACKAGE_NAME}.tgz
DESTINATION=/soft/intel/$INTEL_VERSION

if ! [-e $TAR_FILE]; then
 echo "This should be executed in the directory where the file '$TAR_FILE' resides."
fi

yum -y groupinstall "Development Tools"
yum -y install kernel-headers kernel-devel kernel-tools \
 gtk2-devel libstdc++-devel.i686 \
 glibc.i686 libgcc.i686 libstdc++6.i686

tar -xf $TAR_FILE
cd $PACKAGE_NAME

#Create a silent config file:
cat > custom.cfg <<EOF
ACTIVATION_SERIAL_NUMBER=$SERIAL_NUMBER
PSET_INSTALL_DIR=$DESTINATION
ACCEPT_EULA=accept
CONTINUE_WITH_OPTIONAL_ERROR=yes
CONTINUE_WITH_INSTALLDIR_OVERWRITE=yes
PSET_MODE=install
ACTIVATION_TYPE=serial_number
AMPLIFIER_SAMPLING_DRIVER_INSTALL_TYPE=build
AMPLIFIER_DRIVER_ACCESS_GROUP=vtune
AMPLIFIER_DRIVER_PERMISSIONS=666
AMPLIFIER_LOAD_DRIVER=yes
AMPLIFIER_C_COMPILER=auto
AMPLIFIER_KERNEL_SRC_DIR=auto
AMPLIFIER_MAKE_COMMAND=auto
AMPLIFIER_INSTALL_BOOT_SCRIPT=yes
AMPLIFIER_DRIVER_PER_USER_MODE=no
INTEL_SW_IMPROVEMENT_PROGRAM_CONSENT=no
SIGNING_ENABLED=yes
ARCH_SELECTED=INTEL64
COMPONENTS=DEFAULTS
EOF

./install.sh --silent custom.cfg

The previously executed commands should install the most critical Intel Compiler components. The installation
comes with scripts (in our case: /soft/intel/2019/bin/compilervars.sh) that can be used to set up your
environment. In a small cluster such as this one, it would be acceptable to add a small script (e.g.
/etc/profile.d/intel.sh) on all the nodes that are executed upon user login that would call this script to set the
environment. E.g. one can create a script (/etc/profile.d/intel.sh) with the content:
 . /soft/intel/2019/bin/compilervars.sh intel64
However, sometimes you want to make use of a different compiler, and in that case, it would cause conflicting
library issues. To prevent these issues, we will make use of an environmental modules file that can be used to
load the compilers into our environment when needed.

Even though the destination path was set to /soft/intel/2019, the installer still copies the license file to a file
under /opt/intel/licenses/. This file is required on the other nodes if you want to be able to compile software there
too. To copy the license file, execute the following command on the node where the Intel installation wizard was
run:

It would also be possible to copy the provided Intel license file to the NFS volume (/soft/intel/2019/licenses) and
then set the Environment variable (INTEL_LICENSE_FILE) to the path where the license can be found.

An example module file for the Intel Compilers can be downloaded by executing the following command:

Open the downloaded file (/soft/modules/intel/2019) and modify the line that sets the compiler_flags to reflect
your CPU architecture. See https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-march
for a list of available options. Also, change the compiler_ver value if you are not using the 2019 release.

Nodes=4
for i in $(seq 1 $Nodes); do
 scp -r /opt/intel wn0$i:/opt/
done

[-e /soft/modules/intel] || mkdir -p /soft/modules/intel
wget http://login.hpc.ufs.ac.za/public/intel.module -O /soft/modules/intel/2019

In the provided module file, a lot of variables are set. The values were determined using the following:
https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor as a reference. A screen grab of the selected
options follows:

When using this website as a reference, you will notice that Section 1 significantly changes the values of
Sections 5 and 6. In this case, Section 1 was set to display the parameters for the Fortran compiler. Section 2 can
also be set to compile a static library. You will notice that in Section 3, CDFT, ScaLAPACK and BLACS were
set. This will include the mentioned libraries, which supply various scientific constants and functions to the
compiled code. The Intel ScaLAPACK etc., are more optimised than most third-party libraries. You may remove
some of those libraries, especially if the software requires its own ScaLAPACK, etc. Section 4 is only available,
while the Intel Fortran Compiler in Section 1 is selected.

The critical part of this screengrab is Sections 5 and 6. These values were used when compiling the module file
referred to. If changing any of the settings as per the above image, Sections 5 and 6 will change, and to
implement the changes in the module file, you will have to modify the values of compiler_additional and
compiler_link_line in the module file yourself. Those two variables are used to build the other variables, such as
CFLAGS, FFLAGS, and HPC_LINKLINE.

When compiling code against the Intel compiler, modify the Makefile/makefile and replace the values of
CPPFLAGS, LIBDIR, CFLAGS, FFLAGS and LLIBS with the values that are set after the Intel module is
loaded. E.g. when the Intel module is loaded, you can execute the following to get the "important" values used
when compiling code:

The above code snippet shows some of the essential variables when compiling code. However, this is only a
guideline, and you must replace (and interpret) the correct settings with the required values. If you want to use,
e.g., BLAS, you must also add the value of $HPC_LINKLINE_BLAS to the link line (LLIBS or whatever the
makefile uses to indicate the link line).

Very Important:

When an application is compiled using a specific compiler, you will also have to set the environment
(e.g. module load intel) each time before the software application is executed. This is necessary to ensure
that the LD_LIBRARY_PATH, the PATH and other environmental variables are correctly set for the
application.

22. Reboot all the machines (SN/HN first) and make sure WNs boot up with
home & scratch mounted

The bulk of the communication test and configuration are done now. Now you can reboot all the machines to
ensure their storage is still mounted. It is crucial to make sure that the Storage Node (head node or most likely
wn01) is booted up first before booting up the rest of the Worker Nodes; because the WNs won't be able to
mount all the mount points (/soft /scratch & /home) if they are not available yet.

module load intel
#View the values of the following variables and add those to the makefile
set | grep "^CPPFLAGS\|^LIBDIR\|^CFLAGS\|^FFLAGS\|LLIBS\|^HPC_LINKLINE"

#View the values of the specified compilers and modify the makefile accordingly:
set | grep "^AR=\|^CC=\|^FC=\|^F77=\|^F90=\|^CXX=\|^LD="

23. Install & Configure Torque Server (HN)
Torque can be installed from the EPEL repository or source code. The version on EPEL is relatively new and
should contain the functionality required for your purposes. You will also notice that Munge is a dependency for
Torque. That is because Munge is used as a method of authentication. For your purposes, you can simply install
Munge and copy the key from the HN to the nodes at a later stage.

First of all, we are going to install Torque Server and Munge through yum. These packages will add users to the
system, so a file sync is necessary afterwards.

On the HN, execute:

Before continuing, the /etc/hosts file must contain all the nodes' names.

yum -y install epel-release
yum -y install torque-server torque-client

#Set the hostname to the short format, if the domain name was specified earlier
hostnamectl set-hostname $(hostname -s)
systemctl restart systemd-hostnamed

#On RedHat systems, it is good practice to enable the service immediately,
to ensure you don't forget later
systemctl enable pbs_server
systemctl enable munge

#Now try to start munge
systemctl start munge

#It failed, didn't it? Now let's generate a key:
dd if=/dev/urandom of=/etc/munge/munge.key bs=1 count=1024

chown munge: /etc/munge/munge.key
chmod 0400 /etc/munge/munge.key
chmod 0700 /etc/munge

#Now let's start munge
systemctl start munge

On the HN, execute:

All the above commands should have been executed without errors.

#Set the server name:
PBSServer=wn01

#Create a pbs_server database (is interactive, so execute next line on its own)
pbs_server -t create

#Stop the service we just ran:
kill -9 $(pidof pbs_server)

#Get the number of cores on the system:
NumberOfCores=$(lscpu |grep "^CPU(s):" | sed "s|.* ||g")

cat > /var/lib/torque/server_priv/nodes <<EOF
#hn np=1 server no_jobs all
wn01 np=${NumberOfCores} all prod
wn02 np=${NumberOfCores} all prod
wn03 np=${NumberOfCores} all prod
wn04 np=${NumberOfCores} all prod
EOF

systemctl enable trqauthd
systemctl restart trqauthd
systemctl restart pbs_server

#Now we need to sync some files to all the nodes again:
for i in $(seq 1 4); do
 scp /etc/{passwd,group,shadow,hosts} wn0$i:/etc/
done

#Now create a queue called hpc
qmgr -c "create queue hpc queue_type=execution" $PBSServer
qmgr -c "set queue hpc enabled=true" $PBSServer
qmgr -c "set queue hpc started=true" $PBSServer
qmgr -c "set server default_queue = hpc" $PBSServer

24. *Install & Configure Torque Client (HN & WNs)
The PBS Server was installed in the previous step and should be running. If that is not the case, the rest will be
difficult to debug if something should go wrong. If you struggle to connect to the pbs_server and are sure the
service is running, try to ping the DNS/alias name, e.g. wn01. If that works, try switching off the firewalls on
both the server and the client. If it finally works, you might have to check your firewall's rules and correct those
before continuing.

The torque client was installed but not configured on the HN in the previous section. This was done so that the
commands to control the queues etc., are available on the HN. However, no jobs will be sent on the HN at this
point. If you want to be able to submit jobs to the HN, you can execute the following instructions on the HN too.

Installing and configuring torque-client to allow jobs to be executed on nodes (On HN & WNs):

#Set the following Environment variable to the hostname of the HN:
PBS_Server=wn01

#Set the system hostname to a short format:
sudo hostnamectl set-hostname $(hostname -s)
sudo systemctl restart systemd-hostnamed

yum -y install epel-release

#Install torque-client
yum -y install torque-client torque-mom torque-devel

#Some CPU restriction features
yum -y install libcgroup-tools

#These services must be enabled to start automatically when the server is restarted
systemctl enable pbs_mom
systemctl enable trqauthd cgconfig cgred
systemctl enable munge

#Munge has been set up on the HN, so we just copy the key from the HN:
["$(hostname)" == "$PBS_Server"] || \
 scp $PBS_Server:/etc/munge/munge.key /etc/munge/

#Now make the munge user the owner of the munge.key file
chown munge: /etc/munge/munge.key

#Now configure the PBS Client:
cd /var/lib/torque

#Network name, suffix ... the suffix added at the
end of the hostname to define which network to use:
You must also have the corresponding entries in the /etc/hosts file.
#E.g., 10.0.0.1 wn01-ib
NetSuffix="-ib"

#Get the number of cores on the system:
NumberOfCores=$(lscpu |grep "^CPU(s):" | sed "s|.* ||g")

echo "$PBS_Server" > server_name
cd /var/lib/torque/mom_priv

#The following section, up to the EOF line, has to be executed as a single command:
cat > config <<EOF
\$pbsserver $PBS_Server
\$logevent 255
\$ideal_load $(($NumberOfCores - 1))
\$max_load $NumberOfCores
\$job_exit_wait_time 300
\$nodefile_suffix $NetSuffix
\$source_login_batch true
\$spool_as_final_name true
EOF

#Now we start all the services
systemctl start munge
systemctl start trqauthd cgconfig cgred
systemctl start pbs_mom
systemctl restart trqauthd

#On the HN: see if the node is connected to the PBS Server
pbsnodes $(hostname)

After executing the pbsnodes $(hostname) command, you may notice that the node is offline. This is because
the NUMA configuration has not been done. New versions of PBS Torque consider NUMA configuration. This
means that you have to specify the layout of your CPU cores regarding the memory layout.
You can have a look at: http://docs.adaptivecomputing.com/9-0-3/MWM/Content/topics/torque/1-
installConfig/buildingWithNUMA.htm

On the HN, also have a look at the Torque server logfiles in /var/lib/torque/server_logs/

The following will give you an idea of the layout (On all HN & WN, execute to get layout.....AFTER
pbs_mom HAS BEEN INSTALLED ON THAT MACHINE):

By the way, a lscpu and numactl -H should also show you these results. When performing a lscpu, you need to
take note of the lines starting with "NUMA node(s)" and "CPU(s): " those are the values required for the
/var/lib/server_priv/nodes file and the /var/lib/mom_priv/mom.layout file on the WN. For a graphical
representation of the NUMA layout, type the command: lstopo --output-format png -v --no-io > cpu.png

The /var/lib/torque/server_priv/nodes must have the NUMA layout of the nodes. Otherwise, the command
pbsnodes will state that all the nodes are down. The nodes file will now have to be changed to reflect a
configuration such as the following:

If the (pbs_nodes command) still show the nodes’ state as down, restart the pbs_server on the head node (wn01)
and restart the pbs_mom services on all the nodes (including wn01, if it is used to run jobs).

cd /sys/devices/system/node
ls -l
-r--r--r--. 1 root root 4096 Jun 11 14:43 has_cpu
-r--r--r--. 1 root root 4096 Jun 11 14:43 has_memory
-r--r--r--. 1 root root 4096 Jun 11 14:43 has_normal_memory
drwxr-xr-x. 4 root root 0 May 29 13:03 node0
drwxr-xr-x. 4 root root 0 May 29 13:03 node1
-r--r--r--. 1 root root 4096 Jun 11 14:43 online
-r--r--r--. 1 root root 4096 Jun 11 14:43 possible
drwxr-xr-x. 2 root root 0 Jun 11 14:43 power
-rw-r--r--. 1 root root 4096 May 29 13:03 uevent

#From this file listing, we see that there are two nodes: node0 and node1
#This tells us that the num_node_boards must be set to 2

#Here is a probable 'easier' way to configure the NUMA settings:
NumNUMA=$(lscpu |grep "^NUMA node(s)"|sed "s|.*: *||g")
NumCores=$(lscpu |grep "^CPU(s)"|sed "s|.*: *||g")

#Clear the content of the mom.layout file and then add the entries:
> /var/lib/torque/mom_priv/mom.layout
for i in $(seq 0 $(($NumNUMA - 1))); do
 echo "nodes=$i" >> /var/lib/torque/mom_priv/mom.layout
done

echo "Now you have to make the following entry on the HN."
echo "In the file: /var/lib/torque/server_priv/nodes"
echo "$(hostname) np=$NumCores num_node_boards=$NumNUMA all prod"

#hn np=1 server no_jobs all
wn01 np=16 num_node_boards=1 all prod
wn02 np=16 num_node_boards=1 all prod
wn03 np=16 num_node_boards=1 all prod

25. Submit and manually start a single node test job (HN)
Torque should be operational now, and you can submit a simple test job to the queue.
You have to be a "normal" user to execute the following and submit a job....root can't!

Create a file test.pbs with the content:

Now submit the test job:

26. Make sure that job executes correctly (HN)
The job should be queued at this point, then as root, you can force run the job:

All should be well if the job is running according to the queue (qstat -a).
If the job fails to run, check the log files:
On the HN: /var/lib/torque/server_logs/$(date +%Y%m%d) and
 /var/log/messages
On the node: /var/lib/torque/mom_logs/$(date +%Y%m%d) and
 /var/log/messages
To see on which node the job is running, execute qstat -n

If the job fails, chances are that the user doesn't have an SSH Key, the home directory is not mounted on the
node, or SELinux is enabled on either the node or the HN.
Also, check that pbs_mom is running on the node and pbs_server is running on the HN. On both HN and WN,
execute:

Check if the WN is available:

#!/bin/bash
#PBS -l walltime=00:01:00
#PBS -l nice=19
#PBS -l nodes=1:ppn=8:prod
#PBS -q hpc
echo "I am running on $(hostname)"
date
sleep 10
date

qsub test.pbs

qrun <the job id>

yum -y install net-tools
netstat -nap |grep pbs

pbsnodes wn01

27. Submit and manually start an MPI job that uses all nodes (HN)
An MPI job is started on a node, which becomes the primary node for the job. This primary node then forks
(starts up) the jobs on the other nodes. You should note that multiple MPI jobs can run on a single node. You
should also note that an MPI job can use OpenMP too. This means that a single MPI job can use all the node
cores, or multiple MPI jobs can use one or more cores per job. The SSH keys must be working (See section 18)
before trying to execute the next section. It must work for your standard users too.

For this test, you should become a normal user again. Here is a simple MPI Code snippet to test your MPI
execution. Create a file my_mpi.c and add the following content:

Now the code has to be compiled with an MPI compiler. Let's assume you installed the OpenMPI packages
(openmpi and openmpi-devel) on all the nodes and HN, which installs a modules file as
/etc/modulefiles/mpi/openmpi-x86_64. The installation of Environment modules is discussed later and should
be followed if you want to use the OpenMPI packages here efficiently. For now, let's assume environment-
modules is are already installed:

#include <mpi.h>
#include <stdio.h>

int main(int argc, char** argv) {
/* Initialise the MPI environment */
MPI_Init(NULL, NULL);

/* Get the number of processes */
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

/* Get the rank of the process */
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

/* Get the name of the Processor */
char processor_name[MPI_MAX_PROCESSOR_NAME];
int name_len;
MPI_Get_processor_name(processor_name, &name_len);

/* Print off a hello world message */
printf("Hello from host %s, rank %d" " out of %d processors\n", processor_name,
world_rank, world_size);

/* Finalise the MPI environment. */
MPI_Finalize();
}

rpm -q openmpi || sudo yum -y install openmpi-devel
module load mpi
#Compile the source code:
mpicc my_mpi.c -o my_mpi

#Let’s run the my_mpi program with mpirun only on this machine:
mpirun my_mpi

#Now let's create a hosts file called worker nodes:
cat > workernodes <<EOF
wn01
wn02
EOF

#Now we can execute the code:
$(which mpirun) --hostfile workernodes -np 30 my_mpi

Again, it is crucial that OpenMPI is installed on all the nodes and that the user has an SSH key installed and can
SSH password less to all the nodes you are using. Also, note that the root user can't execute the mpi
commands. If the above commands work, you can continue submitting a PBS MPI job using the following
template:

You should see some results files. If, for instance, you called the file that you created test_mpi.pbs, then you should have a
file test_mpi.pbs.e1234 and test_mpi.pbs.o1234 (where 1234 is the job-id). The file ending with o1234, contains any output
that should have been displayed on the screen. The file ending in e1234, shows any errors you may have. For instance, if
the user can’t log in without a password or if the following message is displayed when trying to SSH:

ssh -n wn01 "hostname"
wn01

#The above was fine, but:
ssh -n wn01-ib "hostname"
The authenticity of host 'wn01-ib (10.0.0.1)' can't be established.
ECDSA key fingerprint is SHA256:XQVRPyGygQgQaU5mtK5zoprAR1iWk9YEK+f5KIcUvt0.
ECDSA key fingerprint is MD5:9a:98:ee:cf:ff:38:6f:11:60:be:ee:fb:59:77:46:cc.
Are you sure you want to continue connecting (yes/no)?

This will break any MPI job. It has to be fixed before continuing.

28. Make sure that the job executes correctly (HN)
After submitting the above test MPI job, you have to start the job (qrun <job-id>) and monitor the queue
(qstat -a and qstat -n). Make sure that the job is running on all the nodes. If the job is not running, you can
monitor the log files as described in section 23. To further debug, make sure the user has an SSH key installed.
Ensure the user's home directory is accessible on all the nodes. Ensure the user can SSH to all the nodes without
a password. Also, ensure the user can SSH to all the node names with the "-ib" or similar postfix chosen while
configuring the cluster.

29. Install, Configure & Test Maui (HN)
Maui is used to execute jobs in the PBS Torque queues. Maui probes the queues at a set interval and checks if
enough resources are available. If the available resources fulfil the job's requirements, Maui will kick off the job.
The Maui License does not strictly comply with GNU and GPL licenses; therefore, you won't find it in the EPEL
or CentOS repositories. We are going to install it from the source code. You will need a free registration account
to be able to download Maui from the Adaptive Computing's website, but I have made the latest version at the
time of this writing available at: http://login.ufs.ac.za/public/

#!/bin/bash
#PBS -l walltime=00:01:00
#PBS -l nodes=2:ppn=8
#PBS -q hpc

module load mpi
cd $PBS_O_WORKDIR
cat $PBS_NODEFILE > nodes
$(which mpirun) --hostfile nodes -np 16 my_mpi

Here is the installation procedure to install Maui on HN:

The Maui configuration file is located at /usr/local/maui/maui.cfg
The default configuration file will work fine, but you can look at the file for future reference.

Now we need to make a systemd unit file so the service can startup when the service is restarted.

30. Well done….. you have a simple, functional cluster…From here on,
multiple tasks can be executed in unison

At this point, you should have a fully functional cluster. The "hardest" part is done now. Now you can start
installing and benchmarking Scientific Software.

#We need the PBS development package to build Maui
yum -y install torque-devel wget
cd /tmp

#Get the Source Code:
wget http://login.hpc.ufs.ac.za/public/maui-3.3.1.tar.gz
tar -xf maui-3.3.1.tar.gz
cd maui-3.3.1
./configure --prefix=/usr/lib/maui
make -j 4 #Executes the make command using 4 cores
make install
cd ..
rm -rf maui-3.3.1
echo "export PATH=\$PATH:/usr/lib/maui/bin" > /etc/profile.d/maui.sh
chmod 644 /etc/profile.d/maui.sh

cd /etc/systemd/system
cat > maui.service <<EOF
[Unit]
Description=Maui Scheduler
Requires=network.target
After=network.target remote-fs.target

[Service]
Type=forking
User=root
PIDFILE=/run/maui.pid
ExecStart=/usr/lib/maui/sbin/maui

[Install]
WantedBy=multi-user.target
EOF

chmod 664 maui.service

systemctl daemon-reload
systemctl enable maui
systemctl start maui

31. Install & Configure Apache (HN) - Optional
Apache is the most widely used Linux webserver and can easily be installed on a GNU Linux distribution. On
RedHat-derived distributions such as CentOS, Scientific Linux and Fedora Core, it is installed by installing the
httpd or httpd2 packages. This section can be skipped for now because ganglia-web installs the httpd package
too. If you are not installing ganglia-web on the HN, you can install httpd as follows:

Remember to configure your IPTables/firewall to ensure the server is accessible using port 80 and, optionally,
port 443. After executing the above commands (and configuring your firewall to allow TCP connections to port
80), you should be able to see a test webpage at: http://< The_HN's_IP_address> for example,
http://10.0.0.1 or on the HN itself: http://127.0.0.1

32. Install Ganglia gmetad & ganglia-web-interface (HN) - Optional
Ganglia is used to see an overall view of the whole cluster and how busy the cluster is. It is helpful to see how
many resources are used per machine visually and can indicate that a node is full or that a node could use more
RAM. You can install the latest version of Ganglia from their website, but following the yum install method
might be more manageable.

Execute the following to install the Ganglia Web interface on the HN:

The critical config files for Ganglia-web are:

/etc/ganglia/conf.php
/etc/httpd/conf.d/ganglia.conf

In the ganglia.conf file, you will see a line like this:

This restricts the website to be only accessible from the local host. Thus you can't use a different machine to
access the web interface. To enable other hosts to connect to the Ganglia web interface, remove the Require local
line and change it to:

After modifying the configuration file(s), you have to restart the httpd service:

You can use a web browser and access: http://IP-address_of_HN/ganglia
At this point, you will see an error when you try to access the website. The error will read something like this:
There was an error collecting ganglia data (127.0.0.1:8652): fsockopen error: Connection refused
This is because the gmetad service is not configured and running on the HN.
Start the gmetad service and make it start automatically after a system reboot:
After executing the above, you should be able to access the website, and some NULL values should be displayed.

#Here is the quick and easy Apache installation method:
yum -y install httpd
systemctl enable httpd
systemctl start httpd

yum -y install ganglia-web
systemctl enable httpd
systemctl start httpd

Require local

Require all granted

systemctl restart httpd

33. Install Ganglia gmond (HN & WNs) – Optional, required if Ganglia was
installed

The Ganglia gmond service is the service that monitors and adds the system resources used to the Ganglia
gmetad service. The gmetad service is probed from the Ganglia web interface and displays the resource maps to
the user. Each node that has to be monitored will have to install the Ganglia gmond service:

After installing the packages on the HN, I would remind you to perform a file sync first and then install it on the
Worker Nodes.

After executing the above, you can refresh the web browser, and you should start to see the resources on the
website: http://10.0.0.1/ganglia

34. Configure IPTables to allow HTTP traffic and gmond traffic (HN) –
Optional, required if Ganglia was installed

Remember to configure IPTables to allow HTTP traffic from the HN to other machines and configure the
Apache ganglia.conf file to give access to the IPs that can see the website. Ganglia gmond uses the multicast
address of 239.2.11.71

It may be necessary to add the following rules in your IPTables configuration file to allow multicast packets:

systemctl start gmetad
systemctl enable gmetad

yum -y install ganglia-gmond
systemctl enable gmond
systemctl start gmond

-A FW -s 224.0.0.0/4 -j ACCEPT
-A FW -d 224.0.0.0/4 -j ACCEPT
-A FW -m pkttype --pkt-type multicast -j ACCEPT

35. *(In parallel) Install some Scientific Software (WNs):
From here on, you can install and configure the Scientific Software. After installing a package, create an
environment module file that users load to set the path. I would recommend that you install a node where it is
going to be executed. This will ensure that if an auto wizard is run and the hardware is detected, the hardware
reflects the actual hardware on which the software will be executed.

The following software packages will be an excellent exercise to install before the competition. You should
familiarise yourself with the installation procedures to ensure you can perform it under pressure. You can also
take notes and write installation scripts that could become helpful during the competition.

a. First, install GCC; the rest of the software needs to be installed using it

This is the dirty install for gcc.
Make sure the following dependencies have already been installed:

yum -y install epel-release
yum -y groupinstall "Development Tools" "Compatibility Libraries" "Compute Node"

yum -y install \
 libgcc.i686 cmake-devel fftw-devel glibc-devel.i686 \
 hwloc-devel hwloc texinfo autogen

The above commands will install GCC version 7.2.0 in /soft/gcc/7.2.0 and create a module gcc/7.2.0 that is loadable by the module
load command. Follow the steps in Section 32 to make the gcc/7.2.0 available for users to load from /soft/modules/gcc.

b. Install OpenMPI
OpenMPI is a message parser that allows jobs to be processed on multiple nodes through the network. Although OpenMPI can be
installed via Yum or other binary methods, you will need to install OpenMPI from the source code for better performance on your
system. The following method can be used to install OpenMPI from Source Code:

Install_Version=7.2.0
Install_Destination=/soft/gcc/$Install_Version
cd /tmp

wget "http://mirror.ufs.ac.za/gnu/gcc/gcc-$Install_Version/ \
gcc-${Install_Version}.tar.gz" -O gcc-${Install_Version}.tar.gz

tar -xvf gcc-${Install_Version}.tar.gz

cd gcc-${Install_Version}
./configure \
 --prefix=$Install_Destination \
 --enable-threads \
 --enable-languages="c,c++,fortran,objc,obj-c++ " \
 --disable-multilib
make -j && sudo make install

mkdir -p /soft/modules/gcc
cd /soft/modules/gcc

sudo cat > $Install_Version <<EOF
#%Module1.0
gcc modulefile

proc ModulesHelp { } {
 puts stderr "\tAdds GCC C/C++ compilers ($Install_Version) to your
environment."
}
module-whatis "Sets the environment for using GCC C/C++ compilers
($Install_Version)"

set GCC_VERSION $Install_Version
set GCC_DIR $Install_Destination

prepend-path PATH \$GCC_DIR/include
prepend-path PATH \$GCC_DIR/bin
prepend-path MANPATH \$GCC_DIR/man
prepend-path LD_LIBRARY_PATH \$GCC_DIR/lib
prepend-path LD_LIBRARY_PATH \$GCC_DIR/lib64

setenv GCC_VER \$GCC_VERSION
setenv CC \$GCC_DIR/bin/gcc
setenv GCC \$GCC_DIR/bin/gcc
setenv FC \$GCC_DIR/bin/gfortran
setenv F77 \$GCC_DIR/bin/gfortran
setenv F90 \$GCC_DIR/bin/gfortran

#For CFLAGS, see: https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html
setenv CFLAGS "-march=broadwell -m64"
EOF

chown -R :hpcusers $Install_Destination /soft/modules

module load gcc || exit 1

APP_NAME=openmpi
APP_VER=2.1.2
APP_DEST=/soft/$APP_NAME/$APP_VER
APP_TMP=/tmp/$APP_NAME/$APP_VER

[-e $APP_TMP] && rm -rf $APP_TMP
mkdir /soft/modules/$APP_NAME
mkdir -p $APP_TMP
cd $APP_TMP
rpm -q torque-devel > /dev/null || yum -y install torque-devel

cd $APP_TMP
[-e APP_NAME-{APP_VER}.tar.gz] || wget http://www.open-
mpi.org/software/ompi/v${APP_VER::${#APP_VER}-2}/downloads/$APP_NAME-
${APP_VER}.tar.gz
tar -zxvf APP_NAME-{APP_VER}.tar.gz
cd $APP_TMP/$APP_NAME-${APP_VER}
./configure \
 --prefix=$APP_DEST \
 --with-tm \
 --enable-mpi-thread-multiple

make -j && make install

cat > /soft/modules/$APP_NAME/$APP_VER <<EOF
#%Module 1.0

OpenMPI module for use with the 'environment-modules' package:

proc ModulesHelp { } {
 puts stderr "\\tAdds OpenMPI ($APP_VER) to your environment."
}

module-whatis "Sets the environment for using OpenMPI ($APP_VER)"

set app_name $APP_NAME
set app_ver $APP_VER
set prefix $APP_DEST
set arch $(uname -m)

module load gcc

prepend-path PATH \$prefix/bin
prepend-path LD_LIBRARY_PATH \$prefix/lib
prepend-path INCLUDE \$prefix/include
prepend-path MANPATH \$prefix/share/man
prepend-path PKG_CONFIG_PATH \$prefix/lib/pkgconfig
prepend-path PYTHONPATH /usr/lib64/python2.7/site-
packages/\$app_name

setenv MPI_VER \$app_ver
setenv MPI_HOME \$prefix
setenv MPI_SYSCONFIG \$prefix/etc
setenv MPI_BIN \$prefix/bin
setenv MPI_INCLUDE \$prefix/include
setenv MPI_LIB \$prefix/lib
setenv MPI_MAN \$prefix/share/man
setenv MPI_FORTRAN_MOD_DIR /usr/lib64/gfortran/modules/\${app_name}-
\$arch
setenv MPI_PYTHON_SITEARCH /usr/lib64/python2.7/site-
packages/\$app_name
setenv MPI_COMPILER \${app_name}-\$arch
setenv MPI_SUFFIX _\${app_name}

EOF

c. Installing FFTW3
FFTW is a scientific library used by multiple software packages such as Gromacs, LAMMPS etc. We need to compile a single precision
version of FFTW to get optimal performance. By default, a double-precision version is compiled that does not support MPI threads
either. The following setup will compile FFTW3 for us, with thread support via OpenMP and multi-host execution via OpenMPI.

The next section will generate the required module file. Note that you must execute this section in the same shell as the previous
steps.

APP_NAME=fftw
APP_VER=3.3.7
APP_DEST=/soft/$APP_NAME/$APP_VER
APP_MODULE=/soft/modules/$APP_NAME/$APP_VER

module load gcc
module load openmpi

export MPICC=$(which mpicc)
export LDFLAGS="-L$MPI_LIB"
export CPPFLAGS="-I$MPI_INCLUDE"
export MPILIBS="-lmpi"

cd /tmp
wget http://www.fftw.org/fftw-3.3.7.tar.gz
tar -xf $APP_SRC
cd /tmp/APP_NAME-APP_VER
make clean

CONFIG_OPTIONS=" \
 --prefix=$APP_DEST \
 --enable-shared \
 --enable-openmp \
 --enable-mpi \
 --enable-fma \
 --enable-sse2 \
 --enable-avx \
 --enable-avx2 \
 --enable-avx-128-fma"

#Configure and compile Double precision version
./configure \
 $CONFIG_OPTIONS

make -j 16 && make install

#Configure and compile the single-precision version
make clean
./configure \
 $CONFIG_OPTIONS \
 --enable-sse \
 --enable-single
make -j 16 && make install

mkdir $(dirname $APP_MODULE)

d. Installing Gromacs

Have a look at: http://www.gromacs.org/Documentation/Performance_checklist

In this example, you will see that we use the GCC and OpenMPI modules. It is essential to first install GCC like discussed above, and
then install openmpi-devel before continuing.

The code section below will allow you to install a basic compiled version of Gromacs. Note that there are some optimisation options,
such as the -DGMX_SIMD option, that need to be set according to your CPU's optimal optimisation flags:
 cat /proc/cpuinfo | grep flags | tail -n 1
If your Processor supports a higher level of optimisation, such as AVX, AVX2, AVX128, AVX256, AVX512 etc., make sure to use those.

As mentioned before, I would compile my own GCC, LAPACK and FFTW; create and load their module files before continuing.

cat > $APP_MODULE <<EOF
#%Module1.0
$APP_NAME modulefile

proc ModulesHelp { } {
 puts stderr "\tAdds $APP_NAME ($APP_VER) to your environment."
}
module-whatis "Sets the environment for using $APP_NAME ($APP_VER)"

module load openmpi
module load gcc

set ver $APP_VER
set dir $APP_DEST

setenv FFTW_DIR \$dir
setenv FFTW_VER \$ver

prepend-path PATH \$dir/bin
prepend-path MANPATH \$dir/share/man
prepend-path LD_LIBRARY_PATH \$dir/lib
prepend-path PKG_CONFIG_PATH \$dir/lib/pkgconfig

EOF

Install_Ver=2016.4
Install_Dest=/soft/gromacs/$Install_Ver
Install_Src= gromacs-${Install_Ver}

module load mpi
module load fftw

cd /tmp
wget ftp://ftp.gromacs.org/pub/gromacs/${Install_Src}.tar.gz \
 -O ${Install_Src}.tar.gz

tar -xvf ${Install_Src}.tar.gz
cd /tmp/${Install_Src}
[-e my_build] && rm -rf my_build
mkdir my_build && cd my_build
cmake ../ \
 -DCMAKE_INSTALL_PREFIX=$Install_Dest \
 -DGMX_MPI=ON \
 -DGMX_OPENMP=ON \
 -DGMX_THREAD_MPI=OFF \
 -DGMX_OPENMP_MAX_THREADS=32 \
 -DFFTWF_INCLUDE_DIR=$FFTW_DIR/include \
 -DFFTWF_LIBRARY=$FFTW_DIR/lib/libfftw3f.so \
 -DCMAKE_C_FLAGS="-march=broadwell" \
 -DGMX_SIMD=AVX2_256

make -j && sudo make install

#Now we create the module file for Gromacs
sudo mkdir -p /soft/modules/gromacs

sudo cat > /soft/modules/gromacs/$Install_Ver <<EOF
#%Module1.0
gromacs modulefile

proc ModulesHelp { } {
 puts stderr "\tAdds Gromacs($Install_Ver) to your environment."
}
module-whatis "Sets the environment for using Gromacs($Install_Ver)"

module load mpi
module load fftw

set GMX_VERSION $Install_Ver
set GMX_DIR $Install_Dest

setenv GMX_SUFFIX _mpi
setenv GMXLDLIB \$GMX_DIR/lib
setenv GMXBIN \$GMX_DIR/bin
setenv GMXMAN \$GMX_DIR/share/man
setenv GMXDATA \$GMX_DIR/share
setenv GMXLIB \$GMX_DIR/share/gromacs/top

prepend-path PATH \$GMX_DIR/bin
prepend-path MANPATH \$GMX_DIR/share/man
prepend-path LD_LIBRARY_PATH \$GMX_DIR/lib64
EOF

chown -R :hpcusers $Install_Dest /soft/modules

After installing Gromacs, you can download and test the installation using the following method:

Although the above qsub command will most likely submit the job to the queue, you must ensure the job is
running effectively. Check the generated log files and see if more optimisation can be done.

e. LAMMPS + It's environment module

f. WRF + It's environment module

g. HPC Challenge

h. OpenFoam + It's environment module

i. Bonus: Install HPC Challenge Benchmark + environment module

36. *Submit test jobs for each Scientific/benchmarking Software stack and
ensure it runs on multiple nodes (HN)

#Execute the following as a regular user:

module load gromacs

#Go to your home directory
cd

#Download the example:
wget http://grid.ufs.ac.za/public/examples/gromacs_test.tar.gz

tar -xvf gromacs_test.tar.gz
cd gromacs_test

#There are two scripts 00prepare_input.sh and 01submit.pbs
#The first script that generates the input files can be executed as:
./00prepare_input.sh
#After the script ran (about 1.5 hours on a VM), the input files should be
#generated
#You can submit the script 01submit.pbs

#Modify the script to reflect the number of nodes etc., before submitting.
#On three virtual machines with 16 cores each, this runs for about 25 mins.
qsub 01submit.pbs

Summary
The following packages can be installed on the WNs and HN/SN from the get-go. This will allow you to perform
multiple configuration options discussed above with more ease:

If you install Scientific Software, many of them will use libraries from Boost, LAPACK, ScaLAPACK, FFTW etc. It is usually better to
install your own versions of these packages and configure your environment (Setting LD_LIBRARY_PATH, PATH, INCLUDES, LIBDIR etc.)
before compiling the Scientific Software. After the software is compiled, you must set the environment each time a user wants to use
the software. Therefore, I recommend using the Environment Modules package and setting the environment there.

#You first have to install the EPEL Release package for other content
yum -y install epel-release

#Now you can install the following Groups of software:
yum -y groupinstall "Development Tools" "Compatibility Libraries" "Compute Node"

#If the above command failed, type:
yum -y group install --setopt=group_command=objects "Development Tools" \
 "Compatibility Libraries" "Compute Node"

#Now, some tools that we might want to use later on
yum -y install \
 nfs-utils iptables net-tools deltarpm \
 vim nano htop numactl \
 torque-client torque-mom munge ganglia-gmond \
 openmpi-devel environment-modules wget elinks \
 dos2unix unix2dos hwloc hwloc-devel \
 texinfo

#Finally, some development packages:
yum -y install \
 libxml2-devel boost-devel lapack-devel grace-devel \
 libgcc.i686 cmake-devel fftw-devel glibc-devel.i686 \
 gtk2-devel glibc.i686 libgcc.i686 libstdc++-devel.i686 \
 kernel-devel

